Ablative Non-fractional Laser

The charts below show the chances of developing various side effects from ablative non-fractional lasers.3,5,9-13 For some side effects, we currently do not have enough data to provide a percentage.

Certain/Likely Side Effects (% = Incidence)

SHORT TERM Skin redness (erythema)*up to 100%
SHORT TERM Crustingup to 100%
SHORT TERM Itching (pruritus)up to 57%
SHORT TERM Skin darkening (hyperpigmentation)**18% to 45.5%
SHORT TERM Mild to moderate acne flare-up9% to 32%
SHORT TERM Infectionup to 20%

*Skin redness (erythema): Skin redness is a typical reaction to ablative non-fractional laser treatment. After Er:YAG non-fractional laser treatment, skin redness lasts 1 month on average and normally disappears completely in 3 months. After CO2 non-fractional laser treatment, skin redness may last from 6 weeks to 3 months.5,9,11

**Skin darkening (post-inflammatory hyperpigmentation): Skin darkening may occur in all skin types but is more common in patients with darker skin. It may begin 3-4 weeks after laser treatment and may persist for up to 3 months.5

Possible/Rare Side Effects

LONG TERM Clogged sweat glands (milia)12% fo 14%
SHORT TERM or LONG TERM Prolonged skin redness (erythema)*4% to 9.1%
SHORT TERM or LONG TERM Skin lightening (hypopigmentation)4% to 8%
SHORT TERM or LONG TERM Persistent skin darkening (hyperpigmentation)**up to 4.5%
SHORT TERM or LONG TERM Raised (keloid) scars†incidence not known

*Prolonged skin redness (erythema): Prolonged skin redness is defined as redness that lasts over 3 months.3,11,13

**Persistent skin darkening (hyperpigmentation): Persistent skin darkening is defined as skin darkening that lasts over 3 months.11

†Raised (keloid) scars: The likelihood of developing raised scars may depend on the specific laser settings. Patients with a history of keloid scarring are more likely to develop keloid scars as a side effect of ablative non-fractional laser treatment.3

References
  1. Sobanko JF, and Alster TS. Management of acne scarring, part I: a comparative review of laser surgical approaches. Am J Clin Dermatol. 13(5), 319-30 (2012)
  2. Preissig J, Hamilton K, and Markus R. Current laser resurfacing technologies: A review that delves beneath the surface. Semin Plast Surg. 26(3), 109–116 (2012).
  3. Uptodate.com. Management of acne scars. Available from: https://www.uptodate.com/contents/management-of-acne-scars?source=search_result&search=subcision&selectedTitle=1~4. Last retrieved on 30 June, 2017.
  4. Alexis AF, et al. Nonablative Fractional Laser Resurfacing for Acne Scarring in Patients With Fitzpatrick Skin Phototypes IV-VI. Dermatol Surg. 42(3), 392-402 (2016).
  5. Alster TS, and West TB. Resurfacing of atrophic facial acne scars with a high-energy, pulsed carbon dioxide laser. Dermatol Surg. 22(2), 151-4 (1996).
  6. Bhatia AC, Dover JS, Arndt KA, Stewart B, and Alam M. Patient satisfaction and reported long-term therapeutic efficacy associated with 1,320 nm Nd:YAG laser treatment of acne scarring and photoaging. Dermatol Surg. 32(3), 346-52 (2006).
  7. Chae WS, et al. Comparative study on efficacy and safety of 1550 nm Er:Glass fractional laser and fractional radiofrequency microneedle device for facial atrophic acne scar. J Cosmet Dermatol. 14(2), 100-6 (2015).
  8. Ahmed R, Mohammed G, Ismail N, and Elakhras A. Randomized clinical trial of CO₂ LASER pinpoint irradiation technique versus chemical reconstruction of skin scars (CROSS) in treating ice pick acne scars. J Cosmet Laser Ther. 16(1), 8-13 (2014).
  9. Engın B, et al. Evaluation of effectiveness of erbium:yttrium-aluminum-garnet laser on atrophic facial acne scars with 22-MHz digital ultrasonography in a Turkish population. J Dermatol. 39(12), 982-8 (2012).
  10. Jeong JT, and Kye YC. Resurfacing of pitted facial acne scars with a long-pulsed Er:YAG laser. Dermatol Surg. 27(2), 107-10 (2001).
  11. Lee SJ, Kang JM, Chung WS, Kim YK, and Kim HS. Ablative non-fractional lasers for atrophic facial acne scars: a new modality of erbium:YAG laser resurfacing in Asians. Lasers Med Sci. 29(2), 615-9 (2014).
  12. Wanitphakdeedecha R, Manuskiatti W, Siriphukpong S, and Chen TM. Treatment of punched-out atrophic and rolling acne scars in skin phototypes III, IV, and V with variable square pulse erbium:yttrium-aluminum-garnet laser resurfacing. Dermatol Surg. 35(9), 1376-83 (2009).
  13. Tanzi EL, and Alster TS. Treatment of atrophic facial acne scars with a dual-mode Er:YAG laser. Dermatol Surg. 28(7), 551-5 (2002).
  14. Bjørn M, Stausbøl-Grøn B, Braae Olesen A, and Hedelund L. Treatment of acne scars with fractional CO2 laser at 1-month versus 3-month intervals: an intra-individual randomized controlled trial. Lasers Surg Med. 46(2), 89-93 (2014).
  15. Cho SB, Lee SJ, Kang JM, Kim YK, Chung WS, and Oh SH. The efficacy and safety of 10,600-nm carbon dioxide fractional laser for acne scars in Asian patients. Dermatol Surg. 35(12),1955-61 (2009).
  16. Hedelund L, Haak CS, Togsverd-Bo K, Bogh MK, Bjerring P, and Haedersdal M. Fractional CO2 laser resurfacing for atrophic acne scars: a randomized controlled trial with blinded response evaluation. Lasers Surg Med. 44(6), 447-52 (2012).
  17. Majid I, and Imran S. Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars. J Cutan Aesthet Surg. 7(2), 87-92 (2014).
  18. Manuskiatti W, Triwongwaranat D, Varothai S, Eimpunth S, and Wanitphakdeedecha R. Efficacy and safety of a carbon-dioxide ablative fractional resurfacing device for treatment of atrophic acne scars in Asians. J Am Acad Dermatol. 63(2), 274-83 (2010).
  19. Manuskiatti W, Iamphonrat T, Wanitphakdeedecha R, Eimpunth S. Comparison of fractional erbium-doped yttrium aluminum garnet and carbon dioxide lasers in resurfacing of atrophic acne scars in Asians. Dermatol Surg. 39(1 Pt 1), 111-20 (2013).
  20. Nirmal B, et al. Efficacy and safety of erbium-doped yttrium aluminium garnet fractional resurfacing laser for treatment of facial acne scars.  Indian J Dermatol Venereol Leprol. 79(2), 193-8 (2013).
  21. Wang YS, Tay YK, and Kwok C. Fractional ablative carbon dioxide laser in the treatment of atrophic acne scarring in Asian patients: a pilot study. J Cosmet Laser Ther. 12(2), 61-4. (2010).
  22. Yuan XH, Zhong SX, and Li SS. Comparison study of fractional carbon dioxide laser resurfacing using different fluences and densities for acne scars in Asians: a randomized split-face trial. Dermatol Surg. 40(5), 545-52 (2014).
  23. Zhang Z, Fei Y, Chen X, Lu W, and Chen J. Comparison of a fractional microplasma radio frequency technology and carbon dioxide fractional laser for the treatment of atrophic acne scars: a randomized split-face clinical study. Dermatol Surg. 39(4), 559-66 (2013)
  24. Cachafeiro T, Escobar G, Maldonado G, Cestari T, and Corleta O. Comparison of Nonablative Fractional Erbium Laser 1,340 nm and Microneedling for the Treatment of Atrophic Acne Scars: A Randomized Clinical Trial. Dermatol Surg. 42(2), 232-41 (2016).
  25. Isarría MJ1, Cornejo P, Muñoz E, Royo de la Torre J, and Moraga JM. Evaluation of clinical improvement in acne scars and active acne in patients treated with the 1540-nm non-ablative fractional laser. J Drugs Dermatol.10(8), 907-12 (2011).